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UNIFICATION OF STATISTICAL METHODS FOR
CONTINUOUS AND DISCRETE DATA
by Emanuel Parzen

Department of Statistics, Texas A&M University!

0. Introduction

This paper introduces notation and concepts which establish unity and analogues
between various steps of statistical data analysis, estimation, and hypothesis testing by
expressing them in terms of optimization and function approximation using information
criteria to compare two distributions. The contents may be described as composed of two
parts whose section titles are as follows.

Part I. Statistical Information Mathemaiics and Comparison Density Functions.

1. Traditional Entropy and Cross-Entropy

2. Comparison Density Functions

3. Renyi Information Approximation

4. Chi-square Information Divergence

Part II. Comparison Density Approach to Unity of Statistical Methods
5. One Sample Continuous Data Analysis

6. One Sample Discrete Data Analysis

7. Multi-sample Data Analysis and Tests of Homogeneity
8. Bivariate Data Analysis

9. Examples of One Sample and Multi-Sample Continuous Data Analysis

1. Traditional Entropy and Cross-Entropy

The (Kullback-Liebler) information divergence between two probability distributions

F and G is defined by

o0

I(F;G) = (~2) / log{g(z)/ f(2)} f(z)dz

— Q00

1Research supported by the U.S. Army Research Office
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when F and G are continuous with probability density functions f(z) and g(z); when F and
G are discrete, with probability mass functions pp(z) and pg(z), information divergence

is defined by
I(F;G) = (-2) ) _log{pc(z)/pF(z)}pF(z).

An information decomposition of information divergence is
I(F;G) = H(F;G) - H(F),

in terms of entropy H(F) and cross-entropy H(F;G); our definitions differ from usual

definitions by a factor of 2:

HF) = (-2) [ (log f(@)}f(a)dz,
H(F,G) = / {logg(z)} (=) dz

2. Comparison Density Functions
Information divergence I(F; G) is a concept that works for both multivariate and uni-
variate distributions. This paper proposes that the univariate case is distinguished by the
fact that we are able to relate I(F; G) to the concept of comparison density d(u; F, G) whose
maximum entropy estimation provides significant extensions of information divergence.
Quantile domain concepts play a central role; Q(u) = F 'l(u) is the quantile function.
When F is continuous, we define the density quantile function fQ(u) = f(Q(u)), score

function J(u) = —(fQ(u))’, and quantile density function
g(v) = 1/fQ(v) = Q'(u).

When F is discrete, we define fQ(u) = pp(Q(u)), g(v) = 1/fQ(u).
The comparison density d(u; F,G) is defined as follows: when F and G are both

continuous,

d(u; F,G) = g(F~1(w))/f(F~ ! (u));
2




when F and G are both discrete
d(u: F,G) = pg(F~"(v))/pp(F~!(u)).
In the continuous case d(u; F,G) is the derivative of
D(v; F,G) = G(F~(u));

in the discrete case we define

u
D(u; F,G) =/ d(t; F,G)dt.
0

Let F denote the true distribution function of a continuous random variable Y. To test
the goodness of fit hypothesis Hg : F = G, one transforms to W = G(Y) whose distribution
function is F(G~1(u)) and whose quantile function is G(F~!(u)). The comparison density
d(u; F,G) and d(u; G, F) are respectively the quantile density and the probability density
of W.

3. Renyi Information Approximation
For a density d(u), 0 < u < 1, Renyi information (of index ), denoted IR)(d), is non-
negative and measures the divergence of d(u) from uniform density dp(u) =1,0 < u < 1.

It is defined:
1
IRy(d) = 2 / {d(x) log d() }du;
0

IR_1(d) = -2 /Ol{logd(u)}du;
for A # 0 or -1
IRy (d) = {2/2(1 + ,\)}log/OI{d(u)}l“du.
To relate comparison density to information divergence we use the concept of Renyi

information /R) which yields the important identity (and interpretation of I(F;G)!)

1
I(F;G) = (—2)/(; log d(u; F, G)du

= IR_1(d(u; F, G)) = IRy(d(u; G, F)).
3




Interchanging F and G: One can prove a basic identity:
IRy(d(w F,G)) = IR_(1 ) (d(ui G, F))
Note A = —(1 + A) for A = —.5. Hellinger information divergence is

IR_5(d) = —8log /0 l{d(u)}'sdu.

Minimizing I R)(d) subject to constraints on d is equivalent, for A > 0, to minimizing
the Ly norm of d for p = 1+ A; we can apply the mathematical theory of this problem which
is currently being developed (Chui, Deutsch, Ward (1990)). Note L, norm corresponds to
A = 1. The minimizing function d* will satisfy IR)(d") < IR,(d).

Convergence Lemma. If d,,(u) is a sequence of densities and A > 0,

IR)(dm(u)) converges to O implies fol |dm(u) — 1|du converges to zero.

Approzimation Theory. To a density d(u), 0 < u < 1, approximating functions are
defined by constraining (specifying) the inner product between d{u) and a specified function
J(u), called a score function. We often assume that the integral over (0,1) of J(u) is zero,
and the integral of J2(u) is finite. A score function J(u), 0 < u < 1, is always defined to

have the property that its inner product with d(u), denoted
1
o) = (), )] = [ I (w)du)du,
0
is finite. The inner product is called a component or linear detector; its value is a measire
of the difference between d(u) and 1.

The question of which distributions to choose as F and G is often resolved by the
following formula which evaluates the inner product between J(u) and d(u; F,G) as a
moment with respect to G if J(u) = o(F~1(u)):

_1 oo
o (Fw) 4w F,6) = [ p(u)dGly) = Ecle(¥)
— Qo0
Often G is a raw sample distribution and F is a smooth distribution which is a model

for G according to the hypothesis being tested.

4




Approximations in Ly norm are based on a sequence Ji(u), k = 1,2,..., which is
a complete orthonormal set of functions. Then if d(u), 0 < u < 1, is square integrable

(equivalently, IR;(d) is finite) one can represent d(u) as the limit of

m
dm(u) =1+ Z[Jk,d]Jk(u),m =12,....
k=1
When pi(y), k = 1,2,.. ., is complete orthonormal set for Ly(F), g(y) is approximated

by
gm(y) = f(y) {1 + ) Eglew(Y)] ‘Pk(y)}

k=1
We call dyn(u) a truncated orthogonal function (generalized Fourier) series.

An important general method of density approximation, called a weighted orthogonal

function approximation, is to use suitable weights w; to form approximations

o0
d*(w) = 1+ ) wilJe, dJe(w).
k=1
to d(u). Often wy depends on a “truncation point” m, and wy — 1 as m — oo.

We propose that non-parametric statistical inference and density estimation can be
based on the same criterion functions used for parametric inference if one uses the minimum
Renyi information approach to density estimation (which extends the maximum entropy
approach); form functions dy ,,,"(x) which minimize IR)(d"(u)) among all functions d*(u)

satisfying the constraints
[Jg,d') = [Jg,d) for k=1,...,m

where J(u) are specified score functions. One expects d ,,"(u) to converge to d(u) as m
tends to co, and IR)(d) ,,") to non-decreasingly converge to IR)(d).

Quadratic Detectors. To test Hp : d(u) = 1, 0 < u < 1, many traditional goodness of
fit test statistics (such as Cramer-von Mises and Anderson-Darling) can be expressed as

quadratic detectors

o 1
{we [Je,d)}2 = [ {d*(u) — 1} du
A /

= /1 {d"(u)}2 du—1= —1+expIR(d*).
0
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We propose that these nonadaptive test statistics are only of historical interest since they
are not as powerful as minimum Renyi information detectors IR)(d) ,,"); in addition the
latter provide unification of statistical methods.

Maximum entropy approximators correspond to A = 0; dg ,,"(u) satisfies an exponen-

tial model (whose parameters are denoted 8y,...,0m)
m
log do,m (1) = D _ k() — W(01,. .. ,0m)
k=1

where ¥ is the integrating factor that guarantees that do,m“(u), 0 < u < 1, integrates to

1:

m
U (6,...,0m) = log/exp Z OrJi(v) ; du
71=1
The approximating functions formed in practice are not computed from the true com-
ponents [Ji,d] but from raw estimators |{Ji,d"] for suitable raw estimators d (u). The
approximating functions are interpreted as estimators of a true density. Methods proposed
for unification and generalization of statistical methods use minimum Renyi information

estimation techniques. Different applications of these methods differ mainly in how they

define the raw density d”(u) which is the starting point of the data analysis.

4. Chi-square information divergence

In addition to Renyi information divergence (an extension of information statistics)
one needs to use an extension of chi-square statistics which has been developed by Read
and Cressie (1988). For A # 0, 1, Chi-square divergence of index A is defined for continuous
F and G by

Ci(F;G) = / By (?—%) f(y)dy

A
0= 2 (o(252) - 4r1)

Bo(d) = 2{dlogd — d + 1}

where

B_i(d) = —2{logd — d + 1}
6




Important properties of By(d) are:

By(d) > 0,B)(1) = B)(1) =0,
Bi(d) = % (d" - 1) , BY(d) = 2d*~!
Bi(d) = (d — 1)?

Bo(d) = 2(dlogd — d + 1)

B_5(d) = 4 (d-5 - 1)2

B_1(d) = —2(logd — d + 1)

B_a(d) =d(d"1 —1)*

Renyi information of index A is defined for continuous F and G: for A # 0, 1

IRy(F/G) = 2/ {g—(y—log y))}f
by

g(y

fly) £

9(v)

fl)

An analogous definition holds for discrete F and G.

IR_{(F;G) = —2/{ z

The Renyi information and chi-square divergence measures are related:

IRy(F;G) = Co(F;G)

IR_\(F;G) = C_{(F;G)

For A #0,1,

2 A1+ 2)
1G) = ——— 1 C\(F;G
IR, (F;QG) XI5 log{ +( 2 ) A(F )}
Interchange of F and G is provided by the Lemma:
CA(FiG) = C_(141(G: F)

IR/\(F,G) = IR_(1+)‘)(G;F)

7




For a density d(u), 0 < u < 1, define

1
cx(@ = [ Brld(u)au

The comparison density again unifies the continuous and discrete cases. One can show

that for univariate F and G

CA(F,G) = Cy(d(w; F, G))

5. One Sample Continuous Data Analysis

We now apply statistical information mathematics to describe a unified approach to
one sample continuous data analysis which uses optimization and approximation based on
information criteria to develop methods which are simultaneously parametric, nonpara-
metric, maximum entropy nonparametric, estimation, testing parametric hypotheses, and
goodness of fit of parametric model. Let Y7,...,Y, be a random sample of a continuous
random variable Y with true unknown distribution F and sample distribution F".

A parametric model F(z;6) for F assumes that the true probability density function
belongs to a parametric family f(z;6) with distribution function F(z;6). The maximum

likelihood estimator 6" minimizes
I(F7; F(+9)) = IRy (d(u; F", F(-;6)).
To prove the proposition, we denote by L(#) the twice average log likelihood function:
L(6) = (2/n)log f(Y1,...,Yn;8)

= 2E7[log f(V; )]

= 2/00 log f(y; 0)dF"(y).

-0

To maximize likelihood we express it as minus cross-entropy:

L(6) = —H(F7; F(-;9)).

8




Temporarily assuming away the fact that F~ has only a symbolic density f~, the maximum

likelihood estimator 6" can be regarded as minimizing over 6
I(F" F(.;0)).

0" may be interpreted as the parameter value 8 for which the sample quantile function
F(F~1(u);8) of the transformed variable Wy = F(Y;6) is closest to uniform. Tra-
ditional goodness of fit statistics test how close to uniform is the sample distribution
function F7(Q(u;0")) of Wy~ whose symbolic probability density is a raw estimator of
d(u; F(;07), F).

Outline of statistical reasoning: We propose that the various steps of statistical rea-
soning compose 4 actions which are the goals of statistical science:

1. Make observations (step 0) and summarize by F7; 2. Form expectations (steps 1
and 2) which is a parametric model for the observations expressed by F{(-;8%); 3. Compare
observations and expectations (steps 3 and 4); 4. Revise model to fit observations (steps
5 and 6). The revised model is equivalent to a nonparametric estimator F~.

Step 0. Observations. The sample is summarized by its sample distribution function
F~ and its sample quantile function Q".

Step 1: Parametric Model Specification. Using diagnostic tools (such as the identifi-

cation quantile function) identify a parametric family F(z;8) such that for all 8
supud(u; F(;0)), F) < oo.

Step 2: Parameter estimation. Maximum likelihood estimator §° can be obtained by
minimizing
IR_y(d(u; ", F(6))
A parametric estimator of F is F*(z) = F(z;6").

Step 2*: Robust parameter estimators 6°* can be obtained by minimizing

IR, (d (u; F*, F(-0)))
9




for a suitable smooth non-parametric distribution function estimator F* and suitable values
of A, usually chosen in the interval -1 < A < 0.

Step 3: Parametric hypothesis testing. To test a hypothesis Hy about the parameter 4,
let 8 " denote the maximum likelihood estimator of 8 under Hy; equivalent to likelihood

ratio tests is the test statistic
IRy (d(w; F",F (0g,))) = IR_; (d(u; F7,F (5 6)))

Step 4: Goodness of fit test of Hp : F = F(-;8") or equivalently Hp : d{u; F(-;8"),F) =

0. Test the significance of the difference from zero of
IRy(d(u; F(;07),F") = IR_1(d(u; F~, F(-;07)).

Step 5: Maximum entropy goodness of fit tests and estimators dg,,"(u) of
d(u; F(-;0"), F) are obtained by minimizing Ip(d") among densities d*(u) satisfying, for

k =1,...,m and specified score functions Ji(u),
[Jk’dk} = [‘]k"r}

defining d"(u) = d(u; F(-;87), F"). For m large enough dg ,"() equals d”(u) and IRy(dg m")
increases to the test statistic of Step 4, IRy(d(u; F(-;67), F")).

Step 6: Rejecticn simulation nonparametric estimation of F. Use an order determining
criterion to determine an order m" with the properties: if m™ = 0, accept Hy; if one rejects
Hp use dy ,,,~"(u) as the density to be used in the rejection method of simulating a random
sample from F. The combination of F(-;8%) and dg ,,,»"(u) is regarded as an estimator F".

We propose that order determining criteria should be regarded as providing density
estimators which require further goodness of fit tests. We propose (as an open research
problem) a method for testing if a smooth estimator d*(u) adequately smooths a raw

estimator d™: test if the ratio d"(u)/d"(v) has as its best smoother a constant function.

10




6. One Sample Discrete Data Analysis

Step 1: Identify a parametric family of probability mass functions p(z;#) to model the
sample probability mass function p”(z).

Step 2: Parameter estimation. Maximum likelihood estimator 8" can be obtained by
minimizing

TR_1(d(u; F7, F(+9))) = (-2) ) _ log{p(z; 8)/p"(=)}p"()
z

A parametric estimator of p is p*(z) = p(z;60"). Minimum chi-square estimation uses the

modified chi-squared distance

IR (d(w; F*, F(56))) = >_{(p(z:6)/p"(2)) ~ 1}?p7(z)

Step 3: Parametric hypthesis testing. To test a hypothesis Hg about the parameter
8, let 0 " denote the minimum-modified chi square estimator of 8 under Hy; equivalent

to likelihood ratio tests is the test statistic
IRy\(d(u; F~, F(-:0,7))) — IR1(d(u; F7, F(+67)))

Step 4: Goodness of fit test of Hy : p = p(-;8") or equivalently Hy : d(u; F(-;67), F) =0.

Test the significance of the difference from zero of
IR\(d(u; F(507),F7)) = IR_(d(u; F, F(:; 67))).

Step 5: Maximum entropy goodness of fit tests and estimators dg,,"(u) of
d(u; F(-;8*), F) are obtained by minimizing I Ro(d") among densities d*(u) satisfying, for

k =1,...,m and specified score functions Ji(u),
[Jk’dA] = [Jkacr]
defining d”(u) = d(u; F(+;6"), F"). For m large enough do ,,"(u) equals d"(u) and IRp(do,m")

increases to a test statistic (alternative to that of Step 4) IRo(d(u; F(-;6%), F")).

11
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Step 6 Rejection simulation nonparametric estimation of F. Use an order determining
criterion to determine an order m” with the properties: if m" = 0, accept Hp; if one rejects
Hy use dg y,~"(u) as the density to be used in the rejection method of simulating a random

sample from F. The combination of F(:;6") and dg y,~"(u) is regarded as an estimator F".

7. Multi-Sample Data Analysis and Tests of Homogeneity

Multi-sample data arises when one observes the values of a variable Y in several pop-
ulations which can be regarded as indexed by a variable X. One can therefore regard
multi-samples as independent observations of a bivariate random variable (X,Y). Con-

ventional multi-sample statistical analysis is concerned with testing the hypothesis Hp of

homogeneity, which we express
Hy : Y is independent of X.

To formulate Hy in terms of comparison density functions let us note that non-
parametric statistics are based on replacing the response Y by its rank transform which
in the population is

W=Fy(Y)

The sample rank transform is

where Py~ (y) is sample mid-distribution function of Y defined by

Py™(y) = Fy"(y) — .5py " (v),

in terms of the sample distribution function F~ and sample probability mass function p".
The sample quantile function of the W~ values which are rank transforms of Y values
associated with a fixed value of X is an estimator of the conditional quantile function of
W
Qw.x(v) = Fy.x(Fy'(v)) = D(u; Fy, Fy.x).
12




The innovation of our approach is a new type of linear rank statistics which are estimators

of the form, called sample components,

[Jk (u)’ d(u; Fy~, FY:X~)J

of population components
[Jk(u), d(u; Fy, Fy.x))

for suitable score functions Ji(u).

Score functions J(u) = ¢(Fy !(u)) satisfy

[/ (w), du; Fy, Fy|x)| = Ey|x[e(Y)] = By x[J (Fy (V)]

this component is the conditional mean given X of J(W), where W = Fy(Y) is the
rank transform of ¥. A Wilcoxon statistic corresponds to J(u) = (12)-3(u — .5) whose
sample component is equivalent to a rank-sum statistic. The conditional mean E[Y|X] is
a component with score function J(u) = Qy (u).

The traditional approach to multiple sample tests of homogeneity is to test the signifi-
cant difference from zero of the sample components. We propose that a comprehensive way
to test the homogeneity hypothesis Hy is to estimate the comparison density d(u; Fy, Fy | x)

for each value of X, and various chi-square statistics
Cx = C\(d(u; Fy, Fy.x))-

8. Bivariate Data Analysis
Another approach to understanding the role of chi-squared measures of the difference
of the comparison density from the uniform d(u) = 1, 0 < u < 1, is to regard X and
Y as random variables and express the homogeneity hypothesis Hy as a hypothesis of
independence:
Ho : Fyx(ylz) = Fy(y) for all y and z.

13




Bivariate data analysis can be unified by the dependence density function defined for 0 <
uy, g < 1 by

dyy(u1,ug) = d(ug; Fy, Fy x(-1Qx (v1))

Traditional maximum likelihood estimators (and EM algorithms) for response vari-
ables Y with covariates X can be based on the information measure of dependence, called

mutual information, defined for continuous random variables X and Y by

I(Y|X)=IR ((Fxy,FxFy) =IR_1(fxy, fxfy)

= (-2) / log{fx (=) fy (0)/ fx.y (=:4)} fx v (=, y)dzdy

The fundamental relation usually used to study the information about Y in X measured
by I(Y|X) is
I(Y|X)=H(Y|X) - H(Y)

defining H(Y'|X) = ExH(fy|x), called conditional entropy of Y given X.
We obtain a fundamental relation expressing mutual information in terms of compar-

ison density function of Fy and Fy|x which measures how well fy models y|x:
I(Y|X) = ExIRo(d(u; Fy, Fy|x))
= ExCo(d(u; Fy, Fy|x))
This is proved by writing
1v1%) =2 [ dofx(a)
[ vty (w) oty x (w12 sy D} v (w12 1y ()
= 2Ex/01log{d(u;Fy,Fy|x)}d(u;FY,FY|x)du

Traditional chi-squared test statistics satisfy

C\(Fxy,FxFy) = ExCy(d(u; Fyx, Fy))

= ExC_(143)(d(u; Fy, Fy|x))

14




We define the chi-square divergence (of index A) of Y given X to be
Ca(Y|X) = ExCy(d(u; Fy, Fy|x))

Traditional chi-square statistics for discrete data use A = 1. Read and Cressie (1988)
recommend A = 2/3.

The notation is at hand to state our comparison density approach to multi-sample
data analysis and tests of homogeneity:

Step 1: Form raw estimates for each value of X

dx"(u) = d(u; Fy~, Fy|x")

which is computed using the formula for comparison density function of sample discrete
distributions.

Step 2: Form und test significance of difference from zero of various components

[Jk (u), dX~(u)]

for suitable score functions Ji(u).
Step 3: Estimators of dx(u) = d(u; Fy, Fy.x) by minimum Renyi information esti-

mators
dxm (1)
subject to constraints
(Je(u), dx™(u)] = [Ji(u), dx"(u)]
Step 4: Smooth chi-squared tests of Hy are based on smooth density estimators sub-

stituted in the population formulas
CA(Y'1X) = Ex[Cx,l;
Cx . = Ca(d(u; Fy, Fy|x))

Further one can disaggregate Cx ), into statistics Cx,y, called “hanging Chi-squares”.
They are asymptotically distributed as Chi-Squared with 1 degree of freedom. If one
15




rejects the hypothesis of homogeneity, the hanging Chi-squares help identify the sources
of rejection.

This outline requires many details and examples to be understandable by statisticians
not used to the point of view of statistical culture.

Contingency table data analysis. For 0 < p < 1, define ODDS (p) = p/(1 — p). For r

by ¢ contingency table, total sample size N, one forms sample statistics

c

V(YIX) =) {1 -px (k)} Cn”

k=1
Cen =) _{1-py (1)} Cian
1=1
k
C;kx = ODDS (px~(k)) ODDS (py™(5))By (%—l)

Asymptotic distributions of test statistics:

(N = 1)C,"(Y|X) is Chi-square ({r — 1}{(c — 1))

(N —1)Cg, )" is Chi-square (r — 1)

(N —1)Cj i " is Chi-square

Multiple-Sample Goodness of Fit Tests. One can associate a weighted orthogonal series

density estimator d*(u; Fy, Fy|x) for each value of X, using suitable complete orthonormal
functions ¢;(u) and weights w;.

2 (Y]X) = Z{l —px (k)} C¢”

~ ~ 1 » 2
Cx" = ODDS (px (k))/o {d (uw; Fy, Fy|x=k) — 1} du

= Z w] .7)
. . 2
C,x = ODDS {px7(k)} [‘P;’(")a‘f(u;F}’,FHX:k)]
Cramer-von Mises Goodness of Fit Test;

w; = 1/jm,0;(u) = 2°cos(ju).
16




1 oo
/0 {D(u) — u}?du = Zl w]2- [¢j,d]2
j=

Anderson Darling Goodness of Fit Test:
wy = {1/7G + D}, pj(u) = (25 +1)° py(2u—1),

Al {{D(u) - u}2 Ju(l — u)} du = iw]z [‘Pj,sz;

7=1
p;(t) are Legendre polynomials on [-1,1].

Hermite Polynomial Goodness of Fit Test:
w; =1/5, @) = G H; (@7 (u));
H,(z) are Hermite polynomials.

9. Examples of One Sample and Multi-Sample Continuous Data Analysis:

National Bureau of Standards NB10 Measurements: Freedman, Pisani, Purves in their
textbook on Statistics (p.94) report 100 measurements of the 10 gram check-weight NB10
made at the National Bureau of Standards. They report: “The normal curve does not
fit at all well. The normal curve does fit the data with three outliers removed. The
normal curve fitted to these measurements has an average of 404 micrograms below 10
grams, and a standard deviation of about 4 micrograms. But in a small percentage of
cases, the measurements are quite a bit farther away from the average t>an the normal
curve suggests. The overall standard deviation of 6 micrograms is a compromise between
the standard deviation of the main part of the histogram (4 micrograms) and the three
outliers, representing deviations of 18, -30, and 32 micrograms. In careful measurement
work, a small percentage of outliers is expected. The only unusual aspect of the NB10
data is that the National Bureau of Standards reported its outliers; many investigators
don’t. Realistic performance parameters require the acceptance of all data that cannot be
rejected for cause.”
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The NB10 data illustrates the statistical analysis strategy that we propose be routinely
applied to data. Step 1. Specify a parametric probability model for the data (here the
model is normal). Step 2. Estimate parameters of the model (here mean and standard
deviation) to be 10 grams-404 micrograms and 6 micrograms respectively. Step 2*. Robust
parameter estimation by Renyi information of index between 0 and 1 obtains as estimators
of a normal model (fitted to the part of the data that can be well fitted by a normal model)
the same mean and a standard deviation of 4 micrograms. Step 4: Goodness of fit test of
normality by traditional tests. Step 5: Maximum entropy estimator of comparison density
d(u; normal model, data) clearly indicates the nature of the data; a poor fit of normal
model to data. Shape of d*(u) in interior of interval (0,1) can be interpreted as expected

curve if d*(u) estimates

d(u; N(0,(6)%), N(0, (4)%))

= K exp {—.5 (K‘,Z — 1) (Q_l(u))z} kK =6/4.

Peaks of d”(u) at u = 0,1 indicate longer tails than normal. In general, one must decide
whether to consider these tails in d'(u) as outliers or as evidence that a longer tailed
distribution than the normal should be used to model the data. In Figure 2 two graphs
illustrate the comparison density estimation process: the raw estimator d”(u) superimposed
on a smooth estimator d*(u); the exponential model smooth estimator dg 4", the orthogonal
polynomial estimator d; 4°, and a naive step function estimator d* representing increments
of D”(u) on 8 equal subintervals. Diagnostic tools at step 1 which help identify probability
models for the data are illustrated by a IQQ plot of the sample quantile function of the data
versus the quantile function of a normal with density f(z) = exp(—nz2). The informative
quantile function of the sample is defined QI (v) = {Q"(v) — Q"(.5)}/2{Q"(.75) — Q"(.25)}.

Breaking Stress of Beam: Cheng and Stephens (1989) give a data set of breaking stress
of 41 beam specimens cut from a single carbon block of graphite H590, and discuss goodness
of fit .ests of the hypothesis that the data is normal. Let F(-;8") denote the normal
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distribution with maximum likelihood estimated value of 8. They show that Moran’s
statistic, which is equivalent to I Ry(d(u; F(-;8"), F~) “correctly” rejects the hypothesis that
the sample is normal, in contrast to more traditional empirical distribution based statistics
(such as Kolmogorov-Smirnov and Cramer-von Mises) which accept the hypothesis of
normality for the sample tested. The comparison density estimation approach indicates the
nature of the data; an excellent fit of normal model in interior of interval (0,1) but peaks at
u = 0,1 indicate outliers or long tails (clearly evident in stem and leaf table of the data).
One conjectures that a symmetric extreme value distribution would be a more appropriate
model. Figure 3 illustrates the comparison density estimation process for a normal model
F(-;07). The graph of D(u; F(-;67), F") is graphically well fitted by a uniform distribution,
and therefore passes traditional goodness of fit tests. The raw estimator d(u; F(-;8%), F")
is superimposed on a smooth estimator. The exponential model smooth estimator d*(u) is
superimposed on a step function estimator computed from increments of D(u; F(-,6%), F")

over 8 sub-intervals.

Cheng and Stephens Break Stress Data
(Stem and Leaf)

27 | .55

28

29 | .89

30| .07 .65

31 (.23 .53 .53 .82

32 .23 .28 .69 .98

33 .28 .28 .74 .74 86 .86 .86

34 |.15 .15 .15 44 62 74 .74
35|.03 .03 .32 44 61 61 .73 .90

36 .20 .78

371.07 36 .36 .36
38

39

40 | .28

Multisample of ratio of assessed value to sale price of residential property: To illustrate
the comparison density approach to testing multil-samples for homogeneity, we consider
data analysed by Boos (1986) on ratio of assessed value to sale price of residential property
in Fitchburg, Mass., 1979. The samples (denoted I, II, III, IV) represent dwellings in the
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categories single-family, two-family, three-family, four or more families. The sample sizes
(54, 43, 31, 28) are proportions .346, .276, .199, .179 of the size 156 of the pooled sample.
We interpret these proportions as px~(k), k = 1,...,4. We compute Legendre, cosine,
Hermite components {Cj’k"}'s up to order 4 of the 4 samples; they are asymptotically
standard normal. We consider components greater than 2 (3) in absolute value to be
significant (very significant).

Legendre, cosine, and Hermite components are very significant only for sample I,
order 1 (-4.06, -4.22, -3.56 respectively). Legendre components are significant for sample
IV, orders 1 and 2 (2.19, 2.31). Cosine components are significant for sample IV, orders 1
and 2 (2.36, 2.23) and sample III, order 1 (2.05). Hermite components are significant for
sample IV, orders 2 and 3 (2.7 and -2.07).

Conclusions are that the four samples are not homogeneous (have the same distribu-
tions). Samples I and IV are significantly different from the pooled sample. Estimators of
the comparison density provide a substantive conclusion; they show that sample I is more
likely to have lower values than the pooled sample, and sample IV is more likely to have
higher values, suggesting that one family homes are underassessed and four family homes
are overassessed, while two and three family homes are fairly assessed.

When one compares components with traditional empirical distribution based tests
one concludes that the insights are provided by the linear rank statistics of orthogonal
polynomials rather than by portmanteau statistics of Cramer-von Mises or Anderson-
Darling type. Comparison density functions, which compare each sample with the pooled

sample, can provide the most substantive information.
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Figure 1
To understand the shapes of comparison density functions, graphs of dSu;G,F ) and
d(u; F,G) for two cases. Case 1: F normal (median 0, density at median 1), G Cauchy

(median 0, density at median 1). Case 2: F normal (median 0, density at median 1), G
symmetric extreme value (median 0, density at median 1).
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Figure 2
Test NB10 Measurements for Normality
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Figure 3
Test Breaking Stress Measurements for Normality
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Figure 4
» N Ratio of assessed price to sale price of residential property
For samples I and IV, sample comparison distribution function D"(u)
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